
Comparison of Queuing Algorithms against DDoS
Attack

Santosh Kumar 1, Abhinav Bhandari 2, A. L. Sangal 3
1-3 Computer Science and Engineering, Dr. B. R. Ambedkar, NIT Jalandhar, India

Abstract— In this paper, we are going to present the simulation
results of comparison of five queuing algorithms (Drop Tail,
Fair Queuing, Stochastic Fair Queuing, Deficit Round Robin
and Random Early Detection) using ns-2 as simulation
environment. Comparison of the queuing algorithms is based on
attack-intensity. We are checking the performance of each
queuing algorithm on a particular queue limit against different
attack intensities. Here an attempt has been made to cover an
overview of Denial of Service (DoS) attack, Distributed Denial of
Service (DDoS) attack, methods of attack, DDoS attack tool kits
and queuing algorithms. The results in this paper also indicate
that UDP type attack traffic is more powerful as compared to
TCP type attack in terms of bandwidth consumption.

Keywords— DoS, DDoS, Queuing Algorithms, Attacking
methods, DDoS Attack Tool Kits.

I. INTRODUCTION

Denial of service attack is an attempt to prevent the
legitimate users from accessing the network resource such as
website, computer system or web service [1]. The aim of
Denial of Service attack is to send a lot of messages to the
server so that it can be crashed, reboot or to do useless works
[2]. Distributed Denial of Service attack is an attack which
uses so many computers to launch a coordinated Denial of
Service attack against one or more targets [3]. To launch a
coordinated attack DDoS uses many compromised systems to
degrade the performance of target. The target of the
Distributed Denial of Service attack is called “primary
victim” while the compromised systems that are used to
launch DDoS attack are often called “secondary victims”.

From various studies, it has been observed that thousands
of attacks occur on regular basis and lots of the attackers
escaped easily due to their attacking techniques and few of
them get caught or traced. There are many types of attackers
who participate in DoS attack. Script kiddies are those
attackers who often but not always use scripts or programs
developed by sophisticated hackers [4]. Such attackers
download attacking tools from the internet and use it
unaltered. Sometimes these attackers can cripple the victims
and left sufficient traces for the investigators to easily trace
them [2]. Sophisticated attackers are those who use several
means to hide their identities during attack. They use their
own accord for attacking purpose or may be hired by any
criminal organization [2]. Potential attackers are smart
enough to create their own tools using sophisticated
command and control techniques to generate the DDoS attack
[2].

 Two approaches are used to implement the DoS and
DDoS attacks, exploiting the vulnerabilities available on the
target or sending a vast number of messages to overwhelm
the target. First type of attack is called vulnerability attack
and another one is known as flooding attack.

II. METHODS OF ATTACK IN DOS AND DDOS

Further we are going to explain few widely known
attacking techniques to implement the DoS and DDoS attacks.

Smurf attack involves an attacker broadcast Internet
Control Message Protocol (ICMP) echo requests, while
having source address spoofed to show the ultimate victim’s
address, to a large group of hosts on a network. After getting
the request hosts send their responses to the ultimate victim,
whose system is overwhelmed and become unable to provide
the services to legitimate users [5].

Ping flood is based on sending the overwhelming number
of ping packets to the victim usually using the ping command
[6]. It is very simple to launch having aim to access to greater
bandwidth than the victim.

Ping of death involved sending IP packet greater than
65,535 bytes. Historically many computers could not handle a
ping packet larger than the maximum IPv4 packet size [7].
Sending a ping message of this size could crash the target
computer. Also sending a ping message greater than 65,535 is
illegal but it can be sent if it is fragmented; and when a target
computer reassembles the packet, a buffer overflow can occur
that causes the system crash.

SYN flood attack uses TCP three-way handshake. In this
attack attacker sends TCP/SYN packets, having spoofed
source address. Each of these packets is considered as
connection request, causing the server to spawn a half-open
connection, by sending back a TCP/SYN-ACK packet and
wait for sender response. But response never comes because
source address is spoofed. These half open connections
saturate the available connections the server is able to make.
Hence the server becomes unable to satisfy the legitimate
users’ requests [8].

Teardrop attack allows sending mangled IP fragments with
overlapping, oversized payloads to target system. This attack
can crash various systems due to the bug in their TCP/IP
fragmentation reassembly code [9].

In Permanent Denial of Service attack an attacker damages
the system so badly that affected system can’t work properly
until its hardware replaced or reinstalled [10].

A Nuke is an old denial of service attack that repeatedly
sends the invalid ICMP packets to the target until it comes to
a complete stop [11].

In Degradation of Service attack, zombies are used by
attacker to launch a DDoS attack. Zombies are compromised
computers acting as intermediary attackers between the main
attacker and victim [12]. Aim of this attack is to degrade the
performance of server by flooding the bandwidth.

III. DDOS ATTACK TOOL KITS

Some attackers are sophisticated enough to create their
own attack code, far more commonly they use code written

Santosh Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1574-1580

1574

by others. Such code is typically built into a general, easily
used package called an attack toolkit. It is very common
today for attackers to bundle a large number of programs into
a single archive file, often with scripts that automate its
installation.

Trinoo uses handler agent architecture in which attacker
and handler communicate using TCP packets; handler and
daemons communicate using UDP packets. Daemons
implement the UDP flood attack to degrade the performance
of target systems [13].

In Tribe Flood Network (TFN), attacker and control master
program uses a command line interface to communicate using
ICMP echo reply packets. Smurf, SYN Flood, UDP Flood
and ICMP Flood attacks are implemented by TFN’s attack
daemons [13].

Stacheldraht combines the features of the Trinoo and TFN
tools and also adds the encrypted communication.
Stacheldraht uses TCP for encrypted communication between
attacker and handlers and it also uses TCP or ICMP for
communication between handlers and agents. Agents use
TCP SYN Flood, UDP Flood, Smurf attack or ICMP echo
flood [14].

In Shaft, the communication between attacker and handlers
occur using TCP telnet connection. While the communication
between handler and attack daemons is achieved using UDP
packets [15].

In Tribe Flood Network 2000 (TFN2K), an encrypted
communication happens between the attacker and handlers
using a key-based CAST-256 algorithm [16]. While the
communication between handler and attack daemons is
implemented using all three communication techniques TCP,
UDP and ICMP Flood attacks.

IV. QUEUE SCHEDULING ALGORITHMS

A queue scheduling discipline allows us to manage access
to the fixed amount of out port bandwidth by selecting which
packet should be transferred and which one should be
dropped when queue limit is fully occupied. There are many
different queue scheduling algorithms to provide the balance
between complexity, control and fairness. Congestion occurs
when packets arrive at out port faster than they can be
transmitted. In this case router interface become congested if
just a single packet has to wait for another packet to complete
its transmission. The task of queue scheduling algorithms is
to minimize the congestion and to provide fair bandwidth to
each of different services competing for bandwidth on the
output port. It also furnishes protection between different
services on output port, so that poorly behaved service in one
queue can not impact the bandwidth delivered to the other
services. In our simulation we are using the following queue
scheduling disciplines available in ns-2.

A. DropTail

Drop Tail is simplest of all queuing algorithms, most
widely used in internet routers. It works with fist in first out
(FIFO) queue. It stores all the coming packets into a single
queue and services them in the same order that they were
placed. Function of Drop Tail is shown in the Fig 1.

Fig. 1 DropTail [17]

B. Fair Queuing

FIFO based algorithm DropTail does not discriminate
between different traffic sources or in other words it does not
separate the packets according to their flows [17]. To resolve
this problem Fair Queuing algorithm was proposed. The
purpose of this algorithm is to maintain a separate queue for
each flow. Discrimination of the traffic sources may be based
on packet size or sending rate of sources. And the router
services these queues in sort of round robin. To understand
this algorithm consider a single flow and imagine a clock that
ticks once each time when one bit of a packet is transmitted.
Let Pi denotes the length of a packet i, Si denotes the
transmission time when the router starts sending the packet i,
and Fi denotes the time when router stops sending the packet i.
If Pi is expressed in terms of how many clock ticks it takes to
transmit packet i, then it shows that Fi = Si + Pi. Let Ai denote
arriving time of the packet when it reaches on router, then Si
= max (Fi-1, Ai). Now we can compute Fi = max (Fi-1, Ai) + Pi.
Now using this formula we calculate Fi for each packet in
each flow. And we treat Fi as timestamp for each packet. We
compare the timestamp of each packet residing at the head of
the each queue and the packet with lowest timestamp is
transmitted first.

Fig. 2 Fair Queuing example (a) packet with shortest finishing times

transmitted first; (b) already sending packet completed first [17]

Santosh Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1574-1580

1575

Consider an example of Fair Queuing algorithm shown in
the Fig. 2. Router discriminates the incoming traffic into
different flows, Flow 1 and Flow 2. And the arriving packets
are stored into the flow in which they belong. In fig 2 (a),
flow 1 stores two packets one having the finishing time F=8
and another one having 5 and flow 2 stores one packet having
finishing time F=10.The finishing time of packet residing at
the head of each queue is compared. The packet with
finishing time F=8 of flow 1 is compared with the packet
with finishing time F=10 of flow 2 and packet with finishing
time F=8 is transmitted first because it is shortest finishing
time. After fully transmission of packet having finishing time
F=8, again it compares packet of flow 1 with packet of flow 2
and finds that packet having finishing time F=5 is shortest so
it is transmitted first and then the packet having finishing
time F=10 of flow 2 is transmitted. In Fig 2 (b), the packet of
flow 2 having finishing time F=10 is being transmitted and a
packet in flow 1 arrives having finishing time F=2 but
transmission of the packet of flow 2 is not halted and after
completion of this transmission it will send the packet with
finishing time F=2.

C. Stochastic Fair Queuing

Stochastic Fair Queuing is an implementation of Fair
Queuing. In Fair Queuing a queue was assigned for each flow
but Stochastic Fair Queuing uses a hash algorithm to divide
the traffic over a limited number of queues [18]. Due to the
hashing in SFQ multiple sessions might end up into the same
bucket. SFQ changes its hashing algorithm so that any two
colliding sessions will only work for a small number of
seconds.

D. Deficit Round Robin

Deficit Round Robin uses three parameters, weight,
DeficitCounter and quantum [19].

Weight decides how much percentage of output port
should be allocated to the queue.

DeficitCounter specifies the number of bytes that should
be transmitted by the queue each time when the scheduler
visits the queue. It also decides that whether a queue is
permitted to transmit the packet or not.

Quantum is proportional to the weight of a queue and also
represented in terms of bytes [20].

Fig. 3 Deficit Round Robin [20]

Each queue is visited by the scheduler and determines the
number of the packet at head of queue. If the packet size at
the head of queue is greater than the value of DeficitCounter
then the value of DeficitCounter is incremented by the value
of quantum and scheduler moves to the next queue. If the size
of the packet at the head of queue is less than or equal to the
DeficitCounter then the value of DeficitCounter is reduced by
the size of packet and queue is allowed to transmits that
packet. Scheduler continues doing this work until the queue is
empty or size of the packet at the head of queue become
greater than the DeficitCounter.

E. Random Early Detection

Random Early Detection (RED) is one of the queue
management schemes. The purpose of RED is to monitor and
control the buffer occupancy. The objectives of RED are
given below.

Fairly distribute the effect of congestion among all traffic
sources competing for the bandwidth by random dropping the
packet from the queue.

To avoid the congestion, packet is early dropped when the
congestion is imminent.

To achieve these objectives it monitors the status of queue.
Let the variable avg be the average size of queue. It checks
the average queue size avg to find out whether it lies between
some minimum threshold value minth and maximum threshold
value maxth. If it is true then the arriving packet is
marked/dropped with probability p= p (avg) that is increasing
function of average queue size. All the arriving packets are
dropped when the variable avg does not lie between minth and
maxth. The probability varies between 0 and some value maxp.
The probability can be given as follow.
 Pb(avg)=maxp{(avg-minth) / (maxth-minth)}

 If avg>= minth then pb(avg) is used otherwise pb is set to
the value p(avg)/(1+p(avg)) [21]. The avg parameter is
initially set to 0. With each arriving packet, the new value is
updated as follow.

 avg=(1-wq)avg+wqq; where q=actual queue size and
wq=small constant [21].

V. SIMULATION FOR FINDING THE MOST POWERFUL ATTACK

AMONG TCP AND UDP BASED ATTACKS

We used ns-2 as simulation tool. Fig. 4 shows the model
for attacking simulation. In the figure each node is
representing a system in the internet; node 0, node 1, node 2,
node 3 and node 4 represent the legitimate UDP user,
legitimate TCP user, attacker, router and receiver respectively.
Link bandwidth for node 0, node 1, node 2, node 3 and node
4 is 1Mbps with 100ms of propagation delay. We are using
DropTail as queuing algorithm. Most used protocols on
internet are UDP and TCP. First of all we are going to
perform UDP flood attack and TCP attack to find out which
one is more powerful attack in terms of affecting the
legitimate users and consuming the more bandwidth as much
as possible. Here node 0 sends 40% data that means it will
occupies 0.4Mbps bandwidth. Therefore, concurrently if node
0 sends the 40% data to node 4, and node 2 sends 30% data to
node 4 and node 2 sends 60% data to node 4, the total coming
traffic at node 3 is 130 % means coming traffic will use
1.3Mbps bandwidth but here we have 1Mbps link between

Santosh Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1574-1580

1576

node 3 and node 4. So data capable of 1Mbps can be
transferred by node 3 therefore 30% data will be dropped and
also called 30% attack intensity. These data may belong to
any of users, may be of TCP user, UDP user or attacker. So
finally attacker gets success in consuming the bandwidth.

Fig. 4 Attacking simulation structure

To meet our objective we are going to perform three
simulations. Simulation ‘A’ is to find out the bandwidth
obtained by legitimate TCP and UDP users in case of attack
free traffic. In simulation ‘B’ TCP type attack traffic is
applied to affect the legitimate users. In simulation ‘C’ UDP
flood attack is applied to affect the legitimate users.

A. Bandwidth obtained by legitimate TCP and UDP users in
case of Attack free traffic

Using the simulation model shown in the Fig. 3, legitimate
TCP user sends the 40% data, legitimate UDP user sends the
30% data and attacker sends none, it shows that TCP and
UDP users want 0.4Mbps and 0.3Mbps bandwidth
respectively. Simulation time is 50 seconds. Fig. 5 shows that
both legitimate TCP and UDP users get the desired
bandwidth 0.4Mbps and 0.3Mbps respectively in case of no
attack traffic.

Fig. 5 Bandwidth obtained by TCP and UDP users in case of attack free

traffic

B. Effect on legitimate TCP and UDP users during TCP type
attack traffic

In this simulation we are going to find out what is effect of
TCP type attack traffic on legitimate TCP and UDP users

against different attack intensities such as 20%, 30%, 40%,
50% and 60%. Legitimate TCP and UDP users are sending
40% and 30% data respectively and attacker is sending data
on varying rate. Fig. 6 shows the result of different attack
intensities’ effect on legitimate TCP and UDP users. Result
shows that TCP attack traffic does not have any effect on
legitimate UDP user. It affects only legitimate TCP user. In
case of no attack traffic legitimate TCP user was getting
0.4Mbps bandwidth but in case of TCP attack traffic it is
getting 0.35Mbps bandwidth. It shows that it is only getting
87.5% out of allocated bandwidth (0.4Mbps) so there is loss
of 12.5% data. And there is a constant effect of TCP attack
traffic against varying attack intensities on legitimate TCP
user means it is getting the constant bandwidth against
varying attack intensities.

Fig. 6 TCP attack’s effect on legitimate TCP and UDP users

C. Effect on legitimate TCP and UDP users during UDP
type attack traffic

Fig. 7 shows the effect of UDP attack traffic on legitimate
TCP and UDP users. Legitimate TCP and UDP users are
sending 40% and 30% data respectively and attacker is
working with varying attack intensities as shown in the Fig. 7.
The following graph shows that UDP attack traffic has
greater effect on both users as compared to TCP type attack
traffic. TCP user is being affected much as compared to UDP
user. As the attack intensities is increased by attacker TCP
user get less bandwidth and finally gets 0Mbps bandwidth.
During attack intensities, from 20% to 40%, legitimate UDP
user obtains the bandwidth for 10 to 50 seconds. From graph
it is clear that during the attack intensities from 40% to 60%,
legitimate UDP user obtains 100% bandwidth and legitimate
TCP user goes down. But at attack intensities 40% to 50%
legitimate UDP user obtains the 100% bandwidth only for 15
to 50 seconds and at attack intensity 60% it gets the 100%
bandwidth only for 20 to 50 seconds.

Fig. 7 UDP attack’s effect on legitimate TCP and UDP users

Bandwidth obtained by TCP
user=0.4Mb

Bandwidth obtained by UDP
user=0.3Mb

Santosh Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1574-1580

1577

D. Results of simulations

Result of simulation ‘A’ in case of attack free traffic shows
that both legitimate TCP and UDP users are getting 100%
bandwidth. Simulation having TCP attack traffic shows the
effect of attack traffic on legitimate TCP and UDP users.
Simulation having UDP type attack traffic shows the effect of
attack traffic on legitimate TCP and UDP users. On
comparing the results of second and third simulations, it is
clear that UDP attack traffic is more powerful as compared to
TCP type one. TCP type attack is limited means on
increasing the attack intensities still there is a constant effect
on both users. While in case of UDP type attack it does not
have constant effect first it has greater effect on legitimate
TCP user as compare to UDP user and finally it also effect on
time for which UDP user obtains the bandwidth.

VI. SIMULATIONS FOR COMPARING THE QUEUING ALGORITHMS

Fig. 8 shows the simulation structure for checking the
performance of different queuing algorithms. Node 0, node 1,
node 2, node 3, node 4, node 5 and node 6 represent the
legitimate TCP user, legitimate UDP user, attacker1,
attacker2, attacker3, router and receiver respectively. All the
links between nodes have 1Mbps bandwidth and propagation
delay of 100ms. These nodes send data packets to receiver
and packets first stored on router (node 5) and then forwarded.
Each router in internet maintains queues to store data packets
and the size of queue may vary. Here we are going to check
the performance of each algorithm on queue limit 80 against
different attack intensities.

Fig. 8 Simulation structure

A. DropTail performance

In this section we are going to check the performance of
DropTail algorithm on queue limit 80 against different attack
intensities. Fig. 9 shows the performance of DropTail
algorithm. It is clear from the graph that on increasing the
attack intensity, bandwidth obtained by legitimate TCP and
UDP users are gradually decreasing.

Fig. 9 DropTail performance

B. Fair Queuing performance

Fig. 10 shows the performance of Fair Queuing algorithm.
From the graph it is clear that bandwidths obtained by
legitimate users decrease when attack intensity increases
from 20% to 40%. And there is a constant effect of attack
intensities varying from 40% to 140%.

Fig. 10 Fair Queuing performance

C. Stochastic Fair Queuing performance

Fig. 10 shows the performance of Stochastic Fair Queuing
algorithm. Graph shows a constant effect of attack intensities
on legitimate TCP and UDP users.

Fig. 11 Stochastic Fair Queuing performance

D. Deficit Round Robin performance

Fig. 12 shows the performance of Deficit Round Robin
algorithm. It shows that on increasing the attack intensity
bandwidth obtained by legitimate TCP user is gradually
decreasing while there is a constant effect on bandwidth
obtained by UDP user during attack intensity varying from
40% to 140%.

Fig. 12 Deficit Round Robin performance

Santosh Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1574-1580

1578

E. Random Early Detection Performance
Fig. 13 shows the performance of Random Early Detection

algorithm. This algorithm is not useful for TCP user because it gets
nothing when attack intensity goes above 60%. While bandwidth
obtained by legitimate UDP user is gradually decreasing on
increasing the attack intensity.

Fig. 13 Random Early Detection performance

F. Performance comparison of Queuing Algorithms

Fig. 14(a) and Fig. 14 (b) show the comparison of
bandwidth obtained by legitimate TCP and UDP users on
different queuing algorithms against different attack
intensities. According to Fig. 14(a) legitimate TCP user is
getting maximum throughputs in case of Stochastic Fair
Queuing algorithm. Fig. 14(b) shows that legitimate UDP
user is getting maximum bandwidth 75% in case of Deficit
Round Robin. But in case of Deficit Round Robin legitimate
TCP user is getting bandwidth 33%. So if we consider
throughputs of TCP user then it is not good enough but if we
consider only for UDP user then Deficit Round Robin is best
algorithm. Fair Queuing algorithm is the second best
algorithm to provide the maximum bandwidth to the
legitimate UDP users. It is providing 70% bandwidth to
legitimate UDP user and 50% to legitimate TCP user. While
Stochastic Fair Queuing algorithm is providing 85%
throughputs to legitimate TCP user and 55% to legitimate
UDP user. So finally, Stochastic Fair Queuing algorithm is
best algorithm among all algorithms in case of providing
satisfactory bandwidth to the legitimate users in case of
having both legitimate TCP and UDP users in network. And
second best algorithm is Fair Queuing algorithm.

Fig. 14 (a) comparison of throughputs of TCP user on different queuing

algorithms

Fig. 14 (b) comparison of throughputs of UDP user on different queuing

algorithms

VII. CONCLUSION

In this paper we discussed basic overview of DoS, DDoS,
attacking methods and DDoS attack tool kits. We have also
explained about Queuing algorithms including DropTail, Fair
Queuing, Stochastic Fair Queuing, Deficit Round Robin and
Random Early Detection. The result of experiments suggests
that UDP type attack is more powerful attack as compare to
TCP type one. On comparing the performance of different
queuing algorithms we found that Stochastic Fair Queuing is
best algorithm among all algorithms while having both
legitimate TCP and UDP users in network.

REFERENCES
[1] Stephen M. Specht, Ruby B. Lee, “Distributed Denial of Service:

Taxonomies of Attacks, Tools, and Countermeasures”. In Proceedings
of the 17th International Conference on Parallel and Distributed
Computing Systems, 2004.

[2] Jelena Mirkovic, Sven Dietrich, David Dittrich, Peter Reither, “Internet
Denial of Service: Attack and Defense Mechanisms”, Publisher:
Prentice Hall PTR, 2004.

[3] Nathalie Weiler, “Honeypots for Distributed Denial of Service
Attacks”. In Proceedings of the Eleventh IEEE International
Workshops on Enabling Technologies 2002.

[4] http://www.pctools.com/security-news/script-kiddie.
[5] http://www.cert.org/advisories/CA-1998-01.html
[6] http://www.iss.net/security_center/advice/Underground/Exploitz/Flood

s/Ping_Flood/default.htm.
[7] http://compnetworking.about.com/od/networksecurityprivacy/l/bldef_pi

ngdeath.htm.
[8] Cisco Systems, Inc., “Defining strategies to protect against TCP SYN

denial of service attacks,” July 1999,
http://www.cisco.com/warp/public/707/4.html.

[9] Leyden, John (2008-05-21), "Phlashing attack thrashes embedded
systems", http://www.theregister.co.uk/2008/05/21/phlashing/.

[10] http://www.pcsympathy.com/2008/05/20/permanent-denial-of-service-
attack-sabotages-hardware/.

[11] http://www.irchelp.org/irchelp/nuke/.
[12] “Encyclopedia of Information Technology”, Atlantic Publishers &

Distributors.2007.pp.397. ISBN8126907525.
[13] D. Dittrich, “The DoS project's ‘Trinoo’ distributed denial of service

attack tool,” Oct. 1999; “The ‘Stacheldraht’ distributed denial of
service attack tool,” Dec. 1999; “The ‘Tribe Flood Network’ distributed
denial of service attack tool,” Oct. 1999,
http://www.washington.edu/People/dad.

[14] D. Dittrich, "The Stacheldraht Distributed Denial of Service Attack
Tool," December 1999,
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt.

[15] D. Dittrich, S. Dietrich, and N. Long, “An analysis of the ‘Shaft’
distributed denial of device tool”, 2000,
http://netsec.gsfc.nasa.gov/~spock/shaft_analysis.txt

[16] C. Adams and J. Gilchrist, “RFC 2612: The CAST-256 encryption
algorithm,” June 1999, http://www. cis.ohiostate. edu/htbin/rfc/rfc
2612.html.

[17] http://nms.csail.mit.edu/6.829-f06/lectures/bruce-queue.pdf

Santosh Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1574-1580

1579

[18] http://opalsoft.net/qos/DS-25.htm
[19] M. Shreedhar, George Varghese, “Eficient Fair Queuing using Deficit

Round Robin”, Microsoft Corporation.

[20] Chuck Semiria, “Supporting Differentiated Service Classes: Queue
Scheduling Disciplines”, Juniper Networks, Inc.

[21] Eitan Altman and Tania Jimenez, “NS Simulator for beginners”, Univ.
de Los Andes, Merida, VeneZuela and ESSI, Sophia-Antipolis, France.

Santosh Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1574-1580

1580

